A Linear-Time Kernel Goodness-of-Fit Test

نویسندگان

  • Wittawat Jitkrittum
  • Wenkai Xu
  • Zoltán Szabó
  • Kenji Fukumizu
  • Arthur Gretton
چکیده

We propose a novel adaptive test of goodness-of-fit, with computational cost linear in the number of samples. We learn the test features that best indicate the differences between observed samples and a reference model, by minimizing the false negative rate. These features are constructed via Stein’s method, meaning that it is not necessary to compute the normalising constant of the model. We analyse the asymptotic Bahadur efficiency of the new test, and prove that under a mean-shift alternative, our test always has greater relative efficiency than a previous linear-time kernel test, regardless of the choice of parameters for that test. In experiments, the performance of our method exceeds that of the earlier linear-time test, and matches or exceeds the power of a quadratic-time kernel test. In high dimensions and where model structure may be exploited, our goodness of fit test performs far better than a quadratic-time two-sample test based on the Maximum Mean Discrepancy, with samples drawn from the model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Density Estimation and Goodness-of-Fit Test in Adaptive Tracking

We investigate the asymptotic properties of a recursive kernel density estimator associated with the driven noise of a linear regression in adaptive tracking. We provide an almost sure pointwise and uniform strong law of large numbers as well as a pointwise and multivariate central limit theorem. We also propose a goodness-of-fit test together with some simulation experiments.

متن کامل

Topics in kernel hypothesis testing

This thesis investigates some unaddressed problems in kernel nonparametrichypothesis testing. The contributions are grouped around three main themes:Wild Bootstrap for Degenerate Kernel Tests. A wild bootstrap method for non-parametric hypothesis tests based on kernel distribution embeddings is pro-posed. This bootstrap method is used to construct provably consistent teststh...

متن کامل

Testing goodness-of-fit in logistic case-control studies

This paper presents a goodness-of-fit test for the logistic regression model under case-control sampling. The test statistic is constructed via a discrepancy between two competing kernel density estimators of the underlying conditional distributions given case-control status. The proposed goodness-of-fit test is shown to compare very favorably with previously proposed tests for case-control sam...

متن کامل

A Kernel Test of Goodness of Fit

We propose a nonparametric statistical test for goodness-of-fit: given a set of samples, the test determines how likely it is that these were generated from a target density function. The measure of goodness-of-fit is a divergence constructed via Stein’s method using functions from a Reproducing Kernel Hilbert Space. Our test statistic is based on an empirical estimate of this divergence, takin...

متن کامل

Bias-corrected goodness-of-fit tests for Pareto-type behavior

In this paper we review the goodness-of-fit problem for assessing whether a sample is consistentwith the Pareto-type model. To this end we introduce a general kernel goodness-of-fit statistic. Thederivation of the proposed class is based on the close link between the strict Pareto and the exponentialdistribution and puts some of the available goodness-of-fit procedures for the latte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017